Personal Homepage

Personal Information

MORE+

Degree:Doctoral Degree in Engineering
School/Department:College of Electronic and Information Engineering

Xiangkun Kong

+

Gender:Male

Education Level:With Certificate of Graduation for Doctorate Study

Alma Mater:南京航空航天大学

Personal Profile

Current position: Home / Personal Profile

孔祥鲲,博士,副教授,硕导;系孔子七十五世血脉(曲阜档案馆查证:);协助国家级领军人才团队指导博士生;电子科学与技术系党支部副书记;南航直升机动力学全国重点实验室、天元实验室、雷达成像与微波光子技术教育部重点实验室固定组成人员;国际电气电子工程师学会 (IEEE)高级会员(Senior Member)(全球会员占比7%);中国电子学会高级会员;国家自然科学基金评审专家;教育部学位中心评审专家;中航工业行业标准制定专家;英国圣安德鲁斯大学公派访问学者。获江苏省教育科学研究成果奖,南京市自然科学优秀论文奖,南京航空航天大学教学优秀奖,教育成果奖等。主持国家自然科学面上项目、军委装备预研项目、海军装备预研项目、航空科学基金项目等60余项;在中科院期刊分区1区、JCR分区1区、行业顶刊发表SCI学术论文200余篇,被引3000余次(2024谷歌学术统计)。研究成果得到中国工程院贲德院士,IEEE Fellow、北京理工大学沈忠祥教授,IEEE Antennas and Propagation Magazine主编F. Andriulli教授等国内外知名专家成果鉴定与推荐。课题组特色:强调课题组之间、师生之间合作共赢,为学生提供从设计到验证的全流程训练,杜绝大组人才“内卷”和“赛马制”;个性化定制培养模式,人均资源占比高;课题组管理制度化,避免因导师好恶产生学生偏见;互联网协作思维,体验“字节跳动”运营模式。教师个人主页: http://faculty3.nuaa.edu.cn/~UnM3Ir/zh_CN/index.htm个人学术网页: https://www.researchgate.net/profile/Xiang-Kun-Kong-2/researchhttp://scholar.google.com/citations?hl=en&user=TqIs8B4AAAAJ微信公众号:电磁隐身与智能结构课题组,分享课题组新闻,科研学习资料,社会服务信息。主讲课程:(1) 《天线原理》,本科必修课程;(2) 《高级电磁仿真与微波测量》,研究生选修课程(双语);(3) 《电磁仿真与微波电路CAD》,本科选修课;研究方向: (1) 人工电磁结构与材料特性,频率选择表面设计;(学术研究为主,工程实践辅助,潜在就业方向:升学深造,国防与航空航天领域,如“十大军工集团”)(2) 射频集成电路设计与测试;(国家级领军人才课题组集成电路芯片方向联合培育)(工程实践为主,学术研究为辅,潜在就业方向:升学深造,半导体与芯片设计领域,如思佳讯、Qorvo等芯片设计公司,台积电、中芯国际等集成电路制造企业)(3) 雷达天线罩设计与应用;(工程实践为主,学术研究为辅,潜在就业方向:国防与航空航天领域,如“十大军工集团”)(4) 电磁兼容与防护评估;(工程实践为主,学术研究为辅,潜在就业方向:国防与航空航天领域,如“十大军工集团”,电磁兼容测试领域研究所及相关企业)(5) 雷达目标散射特性分析;(工程实践为主,学术研究为辅,潜在就业方向:国防与航空航天领域,如“十大军工集团”)(6) 可重构智能超表面通信系统;(学术研究工程实践并举,潜在就业方向:通信领域及电子设备制造领域,如华为、中兴、荣耀等设备制造企业、苹果、小米等手机终端厂商;移动、电信、联通等无线通信运营企业)(7) 电磁智能结构与天线一体化设计。(学术研究工程并举,潜在就业方向:通信领域及电子设备制造领域,如华为、中兴、荣耀等设备制造企业、苹果、小米等手机终端厂商;移动、电信、联通等无线通信运营企业)科研平台建设:一、材料电性能参数测试系统二、电磁波传输特性测试系统三、雷达目标特性(RCS)测量系统四、智能超表面通信平台(与工信部“天地一体频谱认知智能实验室”联合研发)学术会议组织与特邀报告:[1] IEEE International Conference on Computational Electromagnetics (ICCEM 2019), Mar. 20-22, Shanghai, China. Session Co-Chair;[2] 2019年全国超材料大会分会场特邀报告,2019年11月24-27日,中国西安;[3] 微波领域旗舰会议:IEEE Asia-Pacific Microwave Conference (APMC2019), Singapore;[4] 2020达索系统SIMULIA CST电磁仿真应用研讨会特邀报告,2020年9月10日,中国南京;[5] IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT 2020),Shenzhen,China. Invited Talk;[6] 国防科技大学,湘江论坛——“电磁调控新技术”特邀报告,2020年12月5日,中国长沙;[7] 微波领域旗舰会议: IEEE 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2021),Nanjing,China. Sesstion Chair.[8] 微波领域旗舰会议: IEEE 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2022),Harbin,China. Invited Talk; Sesstion Co-Chair.[9] 2022 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Xuzhou,China. Sesstion Co-Chair.[10] 微波领域旗舰会议: IEEE International Conference on Computational Electromagnetics (ICCEM2024), Nanjing, China. Sesstion Chair.[11] 天线领域旗舰会议: IEEE Asia-Pacific Conference on Antennas and Propagation(APCAP'2024),Nanjing, China. Invited Talk;发表学术论文,出版专著情况:一、 专著[1] 孔祥鲲,刘志明,卞博锐,刘少斌. 新型电磁超材料及其在低散射天线中的应用。北京:电子工业出版社,2022.[2] 刘少斌,章海锋,莫锦军,孔祥鲲,刘崧. 等离子体光子晶体理论. 北京:科学出版社,2016.二、 期刊论文2024年(1) Zhang, X., Kong, X., Zhou, S., Liu, P., Zou, Y., Chen, J., ... & Gao, S. (2024). High-Accuracy Beam Generation and Scanning Using Reconfigurable Coding Metasurface. Journal of Physics D: Applied Physics.(2) Sajjad, M., Kong, X., Liu, S., & Irshad Khan, M. (2024). Multifunction and switchable hybrid metasurface based on graphene and gold. Applied Optics, 63(12), 3099-3107.(3) Zou, Y., Kong, X., Zhou, S., Wang, L., Zhao, Y., & Gao, S. (2024). A 3-D Wideband and High-selectivity Amplifying Frequency Selective Surface Based on Slot line and Microstrip line. IEEE Transactions on Antennas and Propagation.(行业顶刊,中科院1区刊物,IEEE视频在线报道)视频链接:https://mp.weixin.qq.com/s/efXoirG3z_5MqOGyvclLFQ(4) Liu, P., Kong, X., Cao, Z., Zhang, X., Zhou, S., Zou, Y., ... & Zhao, S. (2024). All-liquid frequency selective absorber design with flexibility and wide-angle stability. Journal of Physics D: Applied Physics, 57(24), 245102.(5) Wang, Y., Liu, Z., Zhou, H., Bornemann, J., Wang, Y., & Kong, X. (2024). A High‐Gain Wideband Fabry‐Pérot Antenna Employing a Water‐Based Frequency Selective Surface for Polarization‐and RCS‐Reconfigurability. International Journal of RF and Microwave Computer‐Aided Engineering, 2024(1), 1804375.(6) Zhou, S., Kong, X., Wu, W., Cheng, J., Zou, Y., Zhang, X., & Gao, S. (2024). Forced Convection Cooling Antenna Array with Reduced Radar Cross Section. IEEE Antennas and Wireless Propagation Letters.(7) 程健来,孔祥鲲,费钟阳,等. 吸波材料覆盖直升机强散射源RCS缩减分析[J]. 南京航空航天大学学报,2024,56(2):217-226. DOI:10.16356/j.1005-2615.2024.02.003. 2023年(1) Wang, X., Kong, X., Kong, L., Zhang, X., Zhou, S., Xing, L., & Zhu, D. (2023). Bifunctional Water-based Frequency Selective Absorber Regulated by Gravity Field. IEEE Antennas and Wireless Propagation Letters.(2) Zou, Y., Kong, X., Cao, Z., Zhang, X., & Zhao, Y. (2023). Reconfigurable integrated structures with functions of Fabry–Perot antenna and wideband liquid absorber for radar system stealth. Scientific Reports, 13(1), 14678.(3) Sajjad, M., Kong, X., Liu, S., Rahman, S. U., & Khan, Z. (2023). Ultra-wideband Terahertz Absorber Based on E Shape Graphene Pattern. The Applied Computational Electromagnetics Society Journal (ACES), 129-136.(4) Kong, X., Cao, Z., Wang, X., Lin, W., Zou, Y., Wang, H., ... & Gao, S. (2023). Wide-passband reconfigurable frequency selective rasorber design based on fluidity of EGaIn. IEEE Antennas and Wireless Propagation Letters, 22(8), 1922-1926.(5) Lin, W., Kong, X., Xu, Q., Fang, F., Xia, W., & Qi, W. (2023). Improving working volume and total scattering cross section using polarization convertor stirrer in a reverberation chamber. Microwave and Optical Technology Letters, 65(7), 1865-1872.(6) 张馨予,孔祥鲲,刘子庆,等.加载可重构智能超表面的无人机通信系统设计与验证(2023).电波科学学报, DOI: 10.12265/j.cjors.20232422022年(1) Liao, K., Sun, S., Zheng, X., Shao, X., Kong, X., & Liu, S. (2022). A novel polarization converter based on the band-stop frequency selective surface. Chinese Physics B, 31(2), 024211.(2) Zou, Y., Kong, X., Xing, L., Jiang, S., Wang, X., Wang, H., ... & Bornemann, J. (2022). A Slot Antenna Array with Reconfigurable RCS Using Liquid Absorber. IEEE Transactions on Antennas and Propagation.(行业顶刊, 中科院1区)(3) Liao, K., Liu, S., Zheng, X., Zhang, X., Shao, X., Kong, X., & Hao, Z. (2022). A polarization converter with single‐band linear‐to‐linear and dual‐band linear‐to‐circular based on single‐layer reflective metasurface. International Journal of RF and Microwave Computer‐Aided Engineering, 32(2), e22955.(4) Kong, L., Kong, X., Jiang, S., Li, Y., Xing, L., & Bian, B. (2022). A Great Wall-Inspired, Water-Based, Switchable Frequency-Selective Rasorber With Polarization Selectivity: Multifunctional, polarization selective, independent working states. IEEE Antennas and Propagation Magazine, 64(5), 30-42. (封面论文,主编发刊词评价,入选2022年度十大天线热门文章)(5) Jin, X., Kong, X., Wang, X., Lin, W., Jiang, S., Wang, H., & Xu, Q. (2022). Band‐notched frequency‐selective absorber with linear polarization rotation function. International Journal of RF and Microwave Computer‐Aided Engineering, e23175.(6) Liao, K., Liu, S., Shao, X., Zhang, X., Zheng, X., & Kong, X. (2022). An ultra‐wideband dual‐band hybrid frequency‐selective rasorber. International Journal of RF and Microwave Computer‐Aided Engineering, e23197.(7) Wang, H., Kong, X., & Zhang, X. (2022). A Dual-Polarized Frequency-Selective Rasorber With a Switchable Wide Passband Based on Characteristic Mode Analysis. Frontiers in Materials, 9, 912913.(8) Yu, Q., Liu, S., Monorchio, A., Kong, X., Brizi, D., Wu, C., & Wen, Y. (2022). A Highly Selective Rasorber With Ultraminiaturized Unit Based on Interdigitated 2.5-D Parallel Resonator. IEEE Transactions on Electromagnetic Compatibility.(9) Wang, L., Liu, S., Kong, X., Yu, Q., Zhang, X., & Zhang, H. (2022). A Multifunctional Hybrid Frequency-Selective Rasorber With a High-Efficiency Cross-Polarized Passband/Co-Polarized Specular Reflection Band. IEEE Transactions on Antennas and Propagation, 70(9), 8173-8183.(行业顶刊,中科院1区)(10) Kong, X., Jin, X., Wang, X., Lin, W., Wang, H., Cao, Z., & Gao, S. (2022). Design of Switchable Frequency-Selective Rasorber With ARAT or ATAR Operating Modes. IEEE Antennas and Wireless Propagation Letters. (11) Kong, X., Wang, X., Jin, X., Lin, W., Kong, L., Jiang, S., & Xing, L. (2022). Liquid Based Wideband and Switchable 3-D Frequency-Selective Rasorber. IEEE Transactions on Electromagnetic Compatibility. (12) Cheng, E., Wang, X., & Kong, X. (2022). A wideband parallel‐plate waveguide design for FSS/FSR measurement. Microwave and Optical Technology Letters, 64(11), 1906-1910.(13) Liao, K., Liu, S., Zheng, X., Zhang, X., Shao, X., & Kong, X. (2022). An ultra‐wide passband frequency‐selective rasorber with high transmission. Microwave and Optical Technology Letters, 64(11), 1911-1916.2021年(1) Yu, Q., Liu, S., Monorchio, A., Kong, X., Brizi, D., Zhang, X., & Wang, L. (2021). Miniaturized Wide-Angle Rasorber with a Wide Inter-absorption High Transparent Bandpass based on Multiple 2.5-D Resonators. IEEE Antennas and Wireless Propagation Letters. (2) Kong, X., Lin, W., Wang, X., Xing, L., Jiang, S., Kong, L., & Liu, M. (2021). Liquid reconfigurable stealth window constructed by a metamaterial absorber. JOSA B, 38(11), 3277-3284.(3) Sun, F., Xing, L., Xu, Q., Kong, X., Wang, H., & Zhang, G. (2021). An Attitude Independent Liquid Dielectric Resonant Antenna. IEEE Antennas and Wireless Propagation Letters.(4) Kong, X., Kong, L., Jiang, S., Wang, X., Zou, Y., & Xing, L. (2021). Low-Profile and Dual-Polarization Water-Based Frequency Selective Rasorber With Ultrawideband Absorption. IEEE Antennas and Wireless Propagation Letters, 20(12), 2534-2538.(5) Jiang, S., Kong, X., Kong, L., Jin, X., & Yuan, J. (2021). Switchable Polarization-Insensitive Frequency-Selective Surface Reflector/Absorber With Low Profile by Using Magnetic Material. IEEE Antennas and Wireless Propagation Letters, 20(10), 2078-2082.(6) Liu, Z., Bornemann, J., Mamedes, D. F., Liu, S., Kong, X., & Zhao, X. (2021). A Wideband Fabry-Pérot Antenna With Enhanced Gain in the High-Frequency Operating Band by Adopting a Truncated Field Correcting Structure. IEEE Transactions on Antennas and Propagation, 69(12), 8221-8228.(行业顶刊,中科院1区)(7) Yuan, J., Kong, X., Wang, X., Jiang, S., & Kong, L. (2021). Polarization‐independent reconfigurable frequency selective rasorber/absorber with low‐insertion loss. Microwave and Optical Technology Letters, 63(5), 1339-1345.(8) Wang, X., Kong, X., Jiang, S., Kong, L., & Yuan, J. (2021). Wideband transverse electromagnetic cell design and its application in frequency selective surface measurement. International Journal of RF and Microwave Computer‐Aided Engineering, 31(7), e22690.(9) 孔祥鲲,孔令奇,姜顺流,胡豪斌,张翔.电磁超材料在超宽带雷达隐身微小卫星设计中的应用.宇航学报,2021,42(06):775-782.2020年(1) Yuan, J., Kong, X., Chen, K., Shen, X., Wang, Q., & Wu, C. (2020). Intelligent Radome Design with Multilayer Composites to Realize Asymmetric Transmission of Electromagnetic Waves and Energy Isolation. IEEE Antennas and Wireless Propagation Letters.(2) Xue, F., Liu, S., & Kong, X. (2020). Single‐layer high‐gain flat lens antenna based on the focusing gradient metasurface. International Journal of RF and Microwave Computer‐Aided Engineering, 30(6), e22183.(3) Sajjad, M., Kong, X., Liu, S., Ahmed, A., Rahman, S. U., & Wang, Q. (2020). Graphene-based THz tunable ultra-wideband polarization converter. Physics Letters A, 126567.(4 Yu, Q., Liu, S., Kong, X., Qin, J., Wen, Y., Wang, L., & Xu, Y. (2020). Bandwidth enhancement of a circularly polarized tapered crossed slot antenna with corner parasitic directors. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22173.(5) Liu, Z., Liu, S., Zhao, X., Kong, X., Huang, Z., & Bian, B. (2020). Wideband Gain Enhancement and RCS Reduction of Fabry-Perot Antenna Using Hybrid Reflection Method. IEEE Transactions on Antennas and Propagation.(行业顶刊,中科院1区)(6) Liu, Z., Liu, S., Bornemann, J., Zhao, X., Kong, X., Huang, Z., ... & Wang, D. (2020). A Low-RCS, High-GBP Fabry–Perot Antenna With Embedded Chessboard Polarization Conversion Metasurface. IEEE Access, 8, 80183-80194.(7) Yan, X., Kong, X., Wang, Q., Xing, L., Xue, F., Xu, Y., ... & Liu, X. (2020). Water-based Reconfigurable Frequency Selective Rasorber with Thermally Tunable Absorption Band. IEEE Transactions on Antennas and Propagation. (行业顶刊,中科院1区)(8) Yuan, S., Kong, X., Yu, Q., & Liu, S. (2020). Miniaturization of frequency‐selective rasorber based on 2.5‐D knitted structure. International Journal of RF and Microwave Computer‐Aided Engineering, 30(2), e22066.(9) Kong, X., Jiang, S., Kong, L., Wang, Q., Hu, H., Zhang, X., & Zhao, X. (2020). Transparent metamaterial absorber with broadband radar cross-section (RCS) reduction for solar arrays. IET Microwaves, Antennas & Propagation, 14(13), 1580-1586.(10) Yuan, J., Kong, X., Wang, X., Jiang, S., & Kong, L. (2020). Polarization‐independent reconfigurable frequency selective rasorber/absorber with low‐insertion loss. Microwave and Optical Technology Letters.(11) Song, H., Zhang, Q., Liu, S., Kong, X., Zhao, X., & Huang, Z. (2020). A six-port path-reconfigurable circulator based on Y-type plasma photonic crystal. Photonics and Nanostructures-Fundamentals and Applications, 41, 100831.(12) Kong, X., Wang, Q., Jiang, S., Kong, L., Yuan, J., Yan, X., ... & Zhao, X. (2020). A metasurface composed of 3-bit coding linear polarization conversion elements and its application to RCS reduction of patch antenna. Scientific Reports, 10(1), 1-10.(13) Wu, C., Liu, S., Yu, Q., Kong, X., Yuan, J., & Liao, K. (2020). A low profile miniaturized widely‐spaced triband bandpass FSS using coupled resonance. International Journal of RF and Microwave Computer‐Aided Engineering, 30(11), e22389.五年前的代表性工作(1) Kong X, Liu S, Zhang H, et al. A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma[J]. Physics of Plasmas, 2010, 17(10): 103506. (等离子体权威学术期刊,被引106次)(2) Kong, X. K., Liu, S. B., Zhang, H. F., Wang, S. Y., Bian, B. R., & Dai, Y. (2012). Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects. IEEE Journal of Selected Topics in Quantum Electronics, 19(1), 8401407-8401407. (中科院工程技术1区,被引25次)(3) Li, H. M., Liu, S. B., Liu, S. Y., Wang, S. Y., Zhang, H. F., Bian, B. R., & Kong, X. K. (2015). Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance. Applied Physics Letters, 106(11), 114101.(中科院物理1区,被引43次)(4) Kong, X. K., Liu, S. B., Zhang, H. F., Zhou, L., & Li, C. Z. (2011). Band structure calculations for two-dimensional plasma photonic crystals in honeycomb lattice arrangement. IEEE/OSA Journal of lightwave technology, 29(19), 2947-2953. (工程技术2区权威刊物,被引23次)(5) Bian, B., Liu, S., Wang, S., Kong, X., Zhang, H., Ma, B., & Yang, H. (2013). Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber. Journal of Applied Physics, 114(19), 194511.(应用物理权威刊物,被引74次)成果获奖:2016年获江苏省教育科学研究成果三等奖2021年获南京航空航天大学教学优秀二等奖2011年南京自然科学优秀学术论文奖2023年指导研究生团队获得“第十八届“挑战杯”全国大学生课外学术科技作品竞赛“揭榜挂帅”专项赛三等奖”2024年中国国际大学生创新大赛省赛二等奖2019年中国研究生电子设计大赛华东赛区一等奖2020年中国研究生电子设计大赛华东赛区二等奖授权专利:专利转化:(1)发明专利,基于电磁诱导透明的可重构射频识别标签(授权公告号CN104408506B)发明人:孔祥鲲 刘少斌 丁国文 陈琳 刘思源发明专利:(1)发明专利,一种中频宽频带透波、高频和低频极化转换的隐身天线罩(授权公告号CN110265780B)发明人:王玲玲 刘少斌 孔祥鲲(2)发明专利,吸透可重构实现电磁波非对称传输和能量隔离的天线罩(授权公告号CN111725626B)发明人:袁警;孔祥鲲(3)发明专利,一种基于水的极化可重构多功能频率选择吸波体(授权公告号CN112117545B)发明人:孔令奇; 孔祥鲲; 姜顺流; 李元鑫(4)发明专利,一种角度不敏感的可共形宽带反射型线极化转换器(授权公告号CN109378591B)发明人:孔祥鲲;王奇;严祥熙(5)发明专利,一种基于液体的低散射可重构缝隙天线(授权公告号CN113629410B)发明人:孔祥鲲;邹余坤实用新型专利:(略)承担的科研项目情况: 国家自然科学基金面上项目(62071227) 在研Chinese Natural Science Foundation (Grant No. 62071227)江苏省自然科学基金面上项目(BK20201289) 结题Natural Science Foundation of Jiangsu Province of China (BK20201289)科技部外专局“高端外国专家引进计划”项目(011951G2309)在研装备预研共用技术和领域基金(61402090103),(南京理工大学、南京航空航天大学联合申报)结题海军装备预研项目(30203)在研中国国防基础科学研究计划项目(JCKY2021DC05)结题National Defense Basic Scientific Research Program of China under Grant JCKYS2021DC05航空基金(20220018052002(在研),20161852016优秀结题)直升机动力学全国重点实验室开放基金 在研毫米波国家重点实验室开放课题(K202323在研;K202027结题;K201609结题) Open Research Program in China's State Key Laboratory of Millimeter Waves (Grant No.K2020127)中国博士后面上项目(2016M601802) 结题China Postdoctoral Science Foundation (Grant No. 2016M601802)江苏省博士后面上项目(1601009B) 结题Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1601009B)南京航空航天大学科研远景布局基金 结题The Fund of Prospective Layout of Scientific Research for NUAA军事科学院电磁防护工程项目 结题华为技术有限公司横向课题 结题中航工业611所飞行器天线罩设计项目 结题南京华成微波技术有限公司低散射阵列天线设计项目 结题指导研究生情况:目前指导在读硕士9名,参与协同指导2名博士生。毕业硕士10人,毕业博士1人(留学生)。2017级 王奇(中国研究生电子设计大赛华东赛区一等奖,队长,苏州工业园区奖学金获得者;南京航空航天大学研究生创新基金优秀结题,校优秀毕业研究生。毕业去向:中电55所(南京));严祥熙(中国研究生电子设计大赛华东赛区一等奖;发表电信学顶刊论文;校优秀硕士论文;校优秀毕业研究生。毕业去向:紫金山实验室(南京))2018级袁警(中国研究生电子设计大赛华东赛区一等奖,苏州工业园区奖学金获得者;获南京航空航天大学研究生创新基金;校优秀硕士论文;校优秀毕业研究生。毕业去向:中兴南京研究院)2019级孔令奇(中国研究生电子设计大赛华东赛区二等奖,队长;国家奖学金获得者;获南京航空航天大学研究生创新基金。毕业去向:英国利物浦大学全奖攻博,师从IEEE Fellow);姜顺流(第五届全国磁性材料与器件大会“研究生学术新锐奖”,国家奖学金获得者; 获江苏省研究生研究与实践创新项目。毕业去向:中航工业607研究所(无锡))Mohammed Sajjad (巴基斯坦籍博士研究生, 毕业去向:华南理工大学博士后)2020级王雪孟(获南京航空航天大学研究生创新基金;毕业去向:中电13所(石家庄))林伟豪(获江苏省研究生研究与实践创新项目;毕业去向:深圳市振华微电子有限公司)金鑫 ( 发表AWPL行业2区论文;毕业去向:中电55所(南京))2021级邹余坤(南航“英才计划”直博生,大四阶段发表电信学顶刊论文;国家奖学金获得者;南京航空航天大学-意大利比萨大学联合培养博士)曹祖威(获南京航空航天大学研究生创新基金,发表AWPL行业2区论文;18届全国“挑战杯-揭榜挂帅”专项赛三等奖,苏州工业园区奖学金获得者;毕业去向:荣耀终端有限公司(深圳))王贺(获江苏省研究生研究与实践创新项目;毕业去向:中电13所(石家庄))2022级张馨予(南航“英才计划”本硕连读,十八届全国“挑战杯-揭榜挂帅”专项赛三等奖,全国大学生物联网技术与应用“三创”大赛一等奖、ACES-China 最佳学生论文提名, 国家奖学金获得者;获南京航空航天大学研究生创新实验竞赛培养项目;毕业去向:苏州汰砾微波技术公司)周少春 (十八届全国“挑战杯-揭榜挂帅”专项赛三等奖;毕业去向:杭州长川科技股份有限公司(A股上市))程健来 (完成的工程项目被中国兵器工业研究所采用;毕业去向:安徽雷图科技有限公司(合肥))聂士涛(“校企联合培养计划”;毕业去向:凯迈(洛阳)测控有限公司(航空工业中国空空导弹研究院控股,专精特新小巨人企业))2023级王霄鹏 (南航“英才计划”直博生,十八届全国“挑战杯-揭榜挂帅”专项赛三等奖)刘沛淇 (南航硕博连读,获南京航空航天大学研究生创新基金;)余 冬 (“校企联合培养计划”)2024级侯喆芃(南航“英才计划”本硕博连读)备注:导师标签:“唯物主义者”、"科学、自由、平等、健康"、“洋务派”、“学院派”、“师范生”、“懂心理”、“热爱教育事业”、“强调理论联系实际”、“接地气”、“百科杂书”、“闲暇时有小资情调”、“文人气”、“体育盲”、“重理工、鄙视商业炒作”、“憎恶动嘴不动手”。。。欢迎品学兼优,有实干精神,阳光有活力,能静下心来钻研学问的同学报考。专业不限于电子科学与技术,物理类,电子类,材料类均欢迎报考。办公室地址:学院办公楼110,办公电话:025-84896491-4110,邮箱:xkkong@nuaa.edu.cn