扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 葛红娟 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/ghj2/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    交通运输工程 -- 【招收博士、硕士研究生】 -- 民航学院
    电子信息 -- 【招收博士、硕士研究生】 -- 民航学院
    交通运输 -- 【招收博士、硕士研究生】 -- 民航学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Object tracking via inverse sparse representation and convolutional networks

点击次数:
所属单位:民航学院
发表刊物:OPTIK
关键字:Object tracking Inverse sparse representation Convolutional networks Locally normalized features Bank filter
摘要:In this paper, we present a novel object tracking method based on inverse sparse representation and convolutional networks. First, in contrast to existing trackers based on conventional sparse representation, the target template can be sparsely represented by candidate dictionary in our method and the candidates corresponding to nonzero coefficients are selected as the some optimal candidates of tracking results. At the same time, locally normalized features are adopted to obtain the representation of target template and candidate dictionary, which can deal with partial occlusion and slight object appearance change. Second, a convolutional network is proposed to select the best candidate from the candidate set got by inverse sparse representation. Numerous bank filters are introduced to preserve local structure of the target and background samples and the feature maps are extracted to form the simple layers and complex layers. Finally, a simple local model update scheme is employed to accommodate occlusion and target appearance change. Both qualitative and quantitative evaluations on several challenging video sequences demonstrate that the proposed method can achieve favorable and stable results compared to the state-of-the-art trackers. (C) 2017 Elsevier GmbH. All rights reserved.
ISSN号:0030-4026
是否译文:否
发表时间:2017-01-01
合写作者:Wang, Haijun
通讯作者:Wang, Haijun,葛红娟

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)