Affiliation of Author(s):经济与管理学院
Journal:运筹与管理
Key Words:灰色关联聚类;协同过滤;推荐质量;灰色相似度;
Abstract:针对协同过滤推荐系统具有数据的高稀疏,高维度,数据量大的特点,本文将灰色关联聚类与协同过虑推荐算法相结合,构建了灰色关联聚类的协同过滤推荐算法,将其应用到协同过滤推荐系统中,以解决数据具有高稀疏高维度的特性情况下的个性化推荐质量问题。首先,定义了推荐系统中的用户项目评分矩阵,用户灰色绝对关联度,用户灰色相似度,用户灰色关联聚类。然后,给出了灰色关联聚类的协同过滤推荐算法的计算方法和步骤,同时给出了评价推荐质量方法。最后,将本文算法与基于余弦,相关分析及修正的余弦等协同过滤推荐算法在大小不同的数据集下进行了实验,实验表明灰色关联聚类的协同过滤推荐算法相较于传统的协同过滤推荐方法具有推荐质量高,计算量小,对数据大小要求不高等优点,同时在推荐系统的冷启动,稳定性和计算效率方面也具有一定的优势。
Translation or Not:no
Date of Publication:2018-01-25
Co-author:陶维成
Correspondence Author:dyg
Date of Publication:2018-01-25
党耀国
+
Education Level:南京航空航天大学
Paper Publications
基于灰色关联聚类的协同过滤推荐算法
Date of Publication:2018-01-25 Hits: