陈松灿
Professor
Alma Mater:杭州大学/上海交通大学/南京航空航天大学
Education Level:南京航空航天大学
Degree:Doctoral Degree in Engineering
School/Department:College of Computer Science and Technology
E-Mail:
Hits:
Affiliation of Author(s):计算机科学与技术学院/人工智能学院/软件学院
Journal:智能系统学报
Key Words:因子分解机;稀疏;稀疏组Lasso;特征选择;推荐系统;
Abstract:因子分解机(简称为FM)是最近被提出的一种特殊的二阶线性模型,不同于一般的二阶模型,FM对二阶项系数进行了分解,这种特殊的结构使得FM特别适用于高维且稀疏的数据。虽然FM在推荐系统领域已获得了应用,但FM本身并未显式考虑变量的稀疏性,特别当变量中包含结构稀疏信息时。因此,FM的二阶特征结构使其特征选择时应当满足这样一种性质,即涉及同一个特征的线性项和二阶项要么同时被选要么同时不被选,当该特征是噪音时,应当同时不被选,而当该特征是重要变量时,应当同时被选。考虑到这种结构特性,本文提出了一种基于稀疏组Lasso的因子分解机(SGL-FM),通过添加稀疏组Lasso的正则项,不仅实现了组间稀疏,还实现了组内稀疏。从另一个角度看,组内稀疏也相当于对因子分解的维度k进行了控制,使其能根据数据的不同而自适应地调整维度k。实验结果表明,本文提出的方法在保证了相当精度甚至更优精度的情况下,获得了比FM更稀疏的模型。
Translation or Not:no
Date of Publication:2017-11-09
Co-author:郭少成
Correspondence Author:csc