陈松灿
Professor
Alma Mater:杭州大学/上海交通大学/南京航空航天大学
Education Level:南京航空航天大学
Degree:Doctoral Degree in Engineering
School/Department:College of Computer Science and Technology
E-Mail:
Hits:
Affiliation of Author(s):计算机科学与技术学院/人工智能学院/软件学院
Journal:IEEE Trans. Neural Networks Learn. Sys.
Abstract:For a multicategory classification problem, discriminative least squares regression (DLSR) explicitly introduces an ϵ-dragging technique to enlarge the margin between the categories, yielding superior classification performance from a margin perspective. In this brief, we reconsider this classification problem from a metric learning perspective and propose a framework of metric learning-guided least squares classifier (MLG-LSC) learning. The core idea is to learn a unified metric matrix for the error of LSR, such that such a metric matrix can yield small distances for the same category, while large ones for the different categories. As opposed to the ϵ-dragging in DLSR, we call this the error-dragging (e-dragging). Different from DLSR and its related variants, our MLG-LSC implicitly carries out the e-dragging and can naturally reflect the roughly relative distance relationships among the categories from a metric learning perspective. Furthermore, our optimization objective functions are strictly (geodesically) convex and thus can obtain their corresponding closed-form solutions, resulting in higher computational performance. Experimental results on a set of benchmark data sets indicate the validity of our learning framework. © 2012 IEEE.
ISSN No.:2162-237X
Translation or Not:no
Date of Publication:2018-12-01
Co-author:Geng, Chuanxing
Correspondence Author:csc