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The magnetization-induced gap at the surface state is widely believed to be the kernel of magnetic topological
insulators (MTIs) because of its relevance to various topological phenomena, such as the quantum anomalous
Hall effect and the axion insulator phase. However, whether the magnetic gap exists in an intrinsic MTI, such as
MnBi2Te4, still remains elusive, with significant discrepancies between theoretical predictions and various exper-
imental observations. Here, including the previously overlooked self-doping in real MTIs, we find that in general
a doped MTI prefers a ground state with a gapless surface state. We use a simple model based on Koopmans’
theorem to elucidate the mechanism and further demonstrate it in the self-doped MnBi2Te4/(Bi2Te3)n family
through first-principles calculations. Our work sheds light on the design principles of MTIs with magnetic gaps
by revealing the critical role of doping effects in understanding the delicate interplay between magnetism and
topology.
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Introduction. A magnetic topological insulator (MTI)
enables the interplay between magnetism and topological
electronic structure, and thus is an ideal platform to realize
exotic topological quantum phenomena [1,2]. Typically, the
magnetic moments open a band gap of 2|M| in an other-
wise gapless topological surface state (TSS), described by the
surface Hamiltonian vF (kxσy − kyσx ) + Mσz, where the first
two terms present a linear Dirac cone and M the effective
Zeeman field along the z direction. Such a gap is essential
for a MTI because it carries 1/2 topological charge, which is
the manifestation of the quantized bulk topological magneto-
electric coupling [3,4]. In addition, as the magnetization gap
overwhelms the hybridization gap in a two-dimensional (2D)
MTI slab, the quantum anomalous Hall effect (QAHE) can be
observed [5–7].

In recent years, the MnBi2Te4-family compounds were
found as ideal intrinsic MTI materials with a theoretically pre-
dicted sizable TSS gap of 80–100 meV [8–10]. Surprisingly,
while the surface gap of MnBi2Te4 was reported in some
early reports [8,11], subsequent angle-resolved photoemission
spectroscopy (ARPES) measurements [12–19] had observed a
nearly perfect Dirac cone at its (0001) surface, robust across
the critical temperature. Several hypotheses had been exposed
for this discrepancy, focusing on the reconstruction of mag-
netic or geometric configuration at the surface, such as the
in-plane or paramagnetic spin reorientation, surface relaxation
of the top van der Waals (vdW) layer, etc. [12,14,20–23].

*Corresponding author: liuqh@sustech.edu.cn

However, all these scenarios are phenomenological and spe-
cific to a gapless reconfiguration, lacking the evidence why
such reconfiguration would occur. Moreover, while the nearly
gapless TSS was also observed at the MnBi2Te4 termination
of MnBi4Te7 [12,17,24–27], a magnetic gap of about 28 meV
was verified at the MnBi2Te4 termination of MnBi8Te13 [27].
Therefore, a systematic theory that reconciles various experi-
mental observations is desirable for understanding the nature
of the magnetic gap in real MTI samples.

Here, skipping specific speculations of reconfiguration
(magnetic or geometric) that would lead to gapless TSS, we
consider a top-down question, i.e., if the tendency of the
gapless TSS is representative for a group of MTIs with certain
features, or material dependent to MnBi2Te4. We take into
account an important experimental fact, yet overlooked by the
previous scenarios, that the as-grown MTI samples are usually
self-doped, such as the n-type doped MnBi2Te4 [28–30]. A
simple model derived from the generalized Koopmans’ theo-
rem predicts that, regardless of n type or p type, the self-doped
MTI with enough doping concentration prefers the gapless
TSS. If the gain of the single-particle energy eigenvalues of
the doped electrons induced by closing the gap overcomes
the cost of the relaxation energy of reconfiguration, a nearly
gapless TSS will occur. Exemplified by the MnBi2Te4 fam-
ily, we demonstrate the above mechanism by applying the
modern theory of doping implemented into density functional
theory (DFT) calculations. The calculated ground states with
gapless and gapped TSS spectra for the MnBi2Te4 family
yield nice agreements with the experimental observations. Our
work also sheds light on the design principles of MTI with
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magnetic gaps, revealing the critical role of doping effects
in understanding the magnetization-induced topological phase
transitions.

Model study. Koopmans’ theorem uses the Hartree-Fock
method for the approximation of single-particle orbital en-
ergy, stating that the first ionization energy is equal to the
highest occupied orbital energy [31–33]. It can be easily
generalized to calculate the energy changes when electrons
are added to or removed from a N-electron system, e.g.,
E (N + 1) − E (N ) = εN+1 for n-type doping, where E(N) and
εN+1 denote the total energy of the undoped system and
the single-particle energy eigenvalue for electron addition,
respectively. For a metallic system, one can define the total
energy difference upon doping ED(δ) as a function of the
continuous change of the occupation number δ, and apply the
generalized Koopmans’ theorem as follows:

ED(δ) = E (N + δ) − E (N ) = εF δ, (1)

where εF denotes the Fermi level. Besides ionization and
affinity energy calculations, the obtained linear relationship
between the total energy and occupation number is widely
used to benchmark the self-interaction error of DFT [32–34].

One unique feature of the MTI is the multiple phases with
nearly degenerate energies but distinct surface states. The TSS
dominates the states near εF and thus effectively couples the
doping effect; so the doped MTI may adopt a specific topolog-
ical surface state that is favorable in energy. As schematically
shown in Fig. 1(a), we consider two distinct topological sur-
face states; one has a magnetic gap and the other is gapless
for whatever reason. Applying Eq. (1) to the n-doped gapless
and gapped systems, respectively, the difference of the doping
energy ED(δ) between them depends on the difference of their
εF , which is expressed as follows:

Egapless
D − Egapped

D = �εF δ ≈ −|M|δ. (2)

When δ electrons are occupying the surface states, Eq. (2)
indicates that �εF (i.e., εgapless

F − ε
gapped
F ) is less than zero, and

approaches to the value of −|M| as δ down to zero. Therefore,
injecting a few electrons into the gapless system is easier than
the gapped system by earning the doping energy |M|δ. For the
case of p-type doping, a gapless surface state is still favored
for doped MTI (see Fig. S1 [35]). Overall, self-doping tends
to promote the transition from gapped TSS to gapless TSS in
a MTI.

For a MTI whose charge-neutral ground state is gapped by
magnetization, whether such transition occurs or not depends
on the competition between the energy gain from Eq. (2)
and the relaxation energy cost to change the crystal geom-
etry or magnetic configuration. If the relaxation energy is
small enough, e.g., the magnetic anisotropy energy (MAE,
defined as Ex − Ez, where Ex and Ez are the total energies
with in-plane and out-of-plane magnetization, respectively),
the system naturally tends to reduce its gap to earn the doping
energy ED(δ). Take MnBi2Te4 as an example, whose bulk
ground state is reported to be A-type antiferromagnetic (AFM)
with the intralayer ferromagnetic (FM) spin alignment along
the z direction. According to our DFT calculation as well as
the results from the literature, |M| is around 40–50 meV [8]. In
comparison, for the paramagnetic phase or AFM phase with

FIG. 1. (a) The sketch of the self-doped MTI with gapped and
gapless topological surface state (TSS), showing that in doped MTI
a phase transition from gapped to gapless TSS is likely to occur.
The surface (bulk) bands are represented by the red (blue) line.
The black and green dashed lines show the charge neutrality and
the Fermi level for n-type doping, respectively. (b) Corresponding
reconstruction of the magnetic or geometric configuration of a doped
A-AFM topological insulator. The surface tends to form a smooth
domain with the effective out-of-plane magnetization |M| → 0.

in-plane spin orientation, |M| is almost vanishing, resulting in
a nearly gapless TSS. According to Eq. (2), only a fraction
of electron per unit cell (u.c.) at the surface is capable to
earn enough ED(δ) that overwhelms the MAE (0.4 meV/Mn
[12] times the thickness of the domain). Since the synthesized
MnBi2Te4 is typically n-type self-doped, the spin reorienta-
tion from out-of-plane to in-plane magnetic moment has the
legitimate driving force to take place, giving rise to a nearly
gapless TSS [12]. In the following, we verify the above model
in the self-doped MTI MnBi2Te4/(Bi2Te3)n family by using
comprehensive DFT calculations.

DFT results. For a specific doped MTI, the transition
from gapped to gapless TSS could be attributed to various
material-dependent reasons, e.g., surface magnetic or geo-
metric reconstruction [12,14,20–23]. In principle, all these
reasons are dictated by the fundamental energy-lowering prin-
ciple from Koopmans’ theorem discussed above. Without loss
of generality, we next choose magnetic anisotropy (MA) tran-
sition at the surface of the self-doped MnBi2Te4/(Bi2Te3)n

family as one of the most possible factors of nearly gapless
TSS. As shown in Fig. 1(b), magnetic moments align out-of-
plane in the bulk and turn to in-plane at the top/bottom surface,
connected by a magnetic domain wall. If the domain wall is
thick enough, the energy cost of the domain wall is negligible.
Thus, we first choose a six-septuple layer (6-SL) MnBi2Te4

slab to simulate the MAE effects and the transition between
different TSS. The calculated band gap of the 6-SL slab with
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FIG. 2. (a) MAE and (b) �εF of 6-SL MnBi2Te4 slabs as a
function of the doping electrons δ, calculated by VCA and supercell
approaches. For the VCA approach, the substitution donor defect ITe,
TeBi, and the acceptor defect BiTe are considered. For the supercell
approach, TeBi, BiMn, and MnBi substitutions are considered. The
dotted horizontal line in (a) represents the SAE of the slab. The
dotted vertical line corresponds to δ = 0.4, equivalent to the doping
concentration of 3.0×1020 cm−3.

in-plane magnetization is only about 1.6 meV, indicating that
the hybridization between the top and bottom surface is neg-
ligible. To validate our results, the doping effect implemented
into the DFT calculations is realized by two means. One is the
virtual crystal approximation (VCA) approach, which consid-
ers a symmetry-preserved primitive cell composed of virtual
atoms [36]. The other one is the supercell approach with three
types of antisite defects to simulate the chemical doping in
MnBi2Te4. More details of DFT methods are provided in the
Supplemental Material [35].

We first study the ground state of doped MnBi2Te4 by the
VCA method, which is ideal for validating our model because
VCA predominantly counts the effect of εF movement. The
calculated MAE as a function of the doping electrons δ in
the 6-SL slab is shown in Fig. 2(a). The units of the MAE
and δ are defined as meV/u.c. and /u.c., respectively (note
that the u.c. stands for a 2D slab with finite thickness). The
MAE mainly contains two factors, i.e., magnetocrystalline
anisotropy originated from spin-orbit coupling, and shape
anisotropy energy (SAE) from magnetic dipole-dipole inter-
action, which always prefers in-plane magnetization for thin
slabs. The SAE, denoted by the dotted horizontal line, is taken
as −0.14 meV/Mn [37]. For the undoped system, the calcu-
lated magnetocrystalline anisotropy energy is 0.42 meV/Mn,
which is close to previous results [12]. The substitution donor
defect ITe, TeBi, and the acceptor defect BiTe are considered.

As shown in Fig. 2(a), no matter p-type or n-type doping,
a ground state with out-of-plane magnetic moment is only
preferred within a narrow doping range. For n-type doping,
the MAE drops below zero when δ is larger than 0.2, while
it upturns after 0.6 electrons doping. This is because more
bulk states instead of surface states are occupied, reducing
the effective doping concentration. In addition, for both types
of doping, the MAE for the n-doped MnBi2Te4 slabs are
very close. This indicates that the response of MAE upon
doping mostly comes from the doping electrons, rather than
the specific potential of an individual defect.

We also calculate �εF between the gapless (in-plane mag-
netization) and gapped systems (out-of-plane magnetization),
as shown in Fig. 2(b). Here, the Fermi energies are calculated
related to the atom core level energy for the comparison
between different systems. We find that �εF is positive for
p-type doping, and negative for light n-type doping (δ < 0.6).
When δ is larger than 0.6, �εF becomes positive, exactly
corresponding to the upturn of MAE shown in Fig. 2(a). Such
consistency fulfills the generalized Koopmans’ theorem, im-
plying that �εF reflects the derivative of MAE to the doping
concentration.

To further validate our model, we next consider the chem-
ical doping effect by applying the supercell approach. It takes
into account the local disorder effect, which could modulate
the electron structure [38]. We construct a 168-atom supercell
of MnBi2Te4 to simulate the chemical doping. One, two,
and three TeBi and BiMn substitutions (δ = 0.25, 0.50, and
0.75, respectively), which are two of the most possible donor
defects in MnBi2Te4 [29,39], are considered with nearly ho-
mogeneous distribution. As shown in Fig. 2(a), the MAE of
MnBi2Te4 with both TeBi and BiMn defects decrease with
increasing δ, and become negative with δ = 0.5 indicating the
transition to in-plane magnetization. In accordance, �εF for
TeBi and BiMn defects are all negative as shown in Fig. 2(b).
In addition, the calculated results for MnBi chemical substitu-
tions, which are p-type defects (see orange circles in Fig. 2),
show similar trends compared with the curves obtained by
the VCA approach. These qualitatively consistent results in-
dicate the validity of our model for the MTI materials such as
MnBi2Te4.

In experiment, all the nearly gapless TSSs of MnBi2Te4,
observed via ARPES [12–15], possess the Dirac cone located
at about 280 meV below the experimental Fermi level, in-
dicating their doping concentrations. In order to benchmark
the measured doping level, we calculate the band structures
of doped 6-SL MnBi2Te4 with the in-plane magnetization as
the ground state. Both the VCA (TeBi defect) and the supercell
(TeBi and BiMn defects) approaches are applied, with the dop-
ing electrons per u.c. δ = 0.4 (corresponding to the doping
concentration of 3.0×1020 cm−3, close to the experimental
doping concentration in MnBi2Te4 [28]) and 0.5, respectively.
As shown in Figs. 3(a) and 3(b), out-of-plane and in-plane
magnetization give rise to magnetic gap and gapless TSS,
respectively, while the charge neutral point of the Dirac cone
is 325 meV below εF , close to the experimental value. There-
fore, MA transition induced by self-doping could occur at the
surface of experimental MnBi2Te4 samples. For the supercell
approach, a similar conclusion stands. We extract the effec-
tive band structure (EBS) [40,41] to unfold the sophisticated

L201102-3



CHEN, ZHAO, YAO, ZHANG, AND LIU PHYSICAL REVIEW B 103, L201102 (2021)

FIG. 3. (a), (b) Band structures of 6-SL MnBi2Te4 slabs with
0.4/u.c. electrons doping induced by TeBi defects calculated by the
VCA approach for (a) out-of-plane and (b) in-plane magnetization.
(c), (d) The effective band structure of the ground states with in-
plane magnetization of 6-SL MnBi2Te4 slabs with 0.5/u.c. electrons
doping induced by (c) TeBi and (d) BiMn defects calculated by the
supercell approach. The dashed lines mark the Fermi level of the
doped sample.

E-k spaghetti within a supercell Brillouin zone (BZ) into the
spectrum density within the primitive BZ. Figures 3(c) and
3(d) show the EBS for the ground states with in-plane mag-
netization of MnBi2Te4 with TeBi and BiMn defects (δ = 0.5),
respectively. Both EBS spectra show nearly gapless feature.
In detail, there is an unambiguous band crossing point lo-
cated at −230 meV for nonmagnetic TeBi defects, while the
charge neutral point with deformation around −300 meV for
magnetic BiMn defects. Overall, our DFT calculations show
that self-doping indeed results in the nearly gapless spectra
in doped MnBi2Te4 samples, consistent with our theoretical
model from the generalized Koopmans’ theorem.

Besides MnBi2Te4, the MnBi2Te4/(Bi2Te3)n vdW MTI
family with n = 1, 2, and 3 Bi2Te3 quintuple-layers
(QLs) were also grown as single crystals and character-
ized by ARPES [25,42–49]. While the nearly gapless TSS
was observed at the MnBi2Te4 termination of MnBi4Te7

[12,17,24–26], surprisingly, a magnetic gap about 28 meV
was verified at the MnBi2Te4 termination of MnBi8Te13 via
APRES measurements [27]. To validate our theory, we per-
form DFT calculations for a doped MnBi4Te7 slab stacked as
SL-QL-SL-QL-SL-QL-SL (seven vdW layers) and a doped
MnBi8Te13 slab stacked as SL-3(QL)-SL-3(QL)-SL (nine
vdW layers) via the VCA approach with TeBi defects. Fig-
ure 4(a) shows the MAE of the doped MnBi4Te7 (MnBi8Te13)
denoted by the solid blue square (solid red circle), and �εF

FIG. 4. (a) MAE and �εF of doped MnBi4Te7 and MnBi8Te13

slabs with TeBi defects calculated by the VCA approach. The
solid line and dashed line represent MAE and �εF , respectively.
(b), (c) The band structure of the ground states for the (b) MnBi4Te7

slab with in-plane magnetization and the (c) MnBi8Te13 slab with
out-of-plane magnetization with 0.4/u.c. electrons doping.

between the doped MnBi4Te7 (MnBi8Te13) with in-plane and
out-of-plane magnetization denoted by the hollow blue square
(hollow red circle). In light doping range (δ < 0.6), the MAE
decreases for both MnBi4Te7 and MnBi8Te13 slabs with in-
creasing δ, accompanied with negative �εF , consistent with
Koopmans’ theorem. However, comparing with MnBi4Te7,
the decline of MAE upon electron doping in MnBi8Te13 is
slower. For δ = 0.4, the MA transition only occurs for doped
MnBi4Te7, while the doped MnBi8Te13 keeps the out-of-plane
magnetization as the ground state. Consequently, as shown in
Fig. 4(c), the ground state of the doped MnBi4Te7 exhibits
nearly gapless TSS located at −310 meV, which is similar to
that of MnBi2Te4. In contrast, the TSS of doped MnBi8Te13

has a magnetic gap as shown in Fig. 4(d), where the conduc-
tion band minimum is around −235 meV, also close to the
experimental value (about −200 meV) [27].

To explain the distinct behavior of the TSSs of MnBi4Te7

and MnBi8Te13, it is straightforward to attribute it to their
AFM and FM magnetic configurations. However, we note
that despite the AFM nature of MnBi4Te7, the penetration
of the TSS, which is mainly captured by ARPES, is less
than two vdW layers, similar to that of MnBi8Te13. Here we
provide an alternative explanation. As shown in Figs. 3(c)
and 3(d), the conduction bands of the bulk states are par-
tially occupied by the doping electrons. As mentioned in the
model, only the doping electrons occupying the TSS con-
tribute to the energy gain and the transition. On the other
hand, the Dirac cone of Bi2Te3 is deeper than the charge
neutral point of MnBi2Te4 [22]. Therefore, more Bi2Te3 vdW
layers in MnBi8Te13 than that in MnBi4Te7 result in more
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low-energy bulk conduction bands occupied by self-doping
electrons, thus reducing the effective δ for MA transition to a
gapless TSS.

Discussion. Our theory based on the generalized Koop-
mans’ theorem reaches the conclusion that a doped MTI tends
to have a gapless TSS to gain the single-particle energy of
the surface state, thus fundamentally explaining the nearly
gapless TSS of the MnBi2Te4 family observed by multi-
ple ARPES measurements [12–17,22,26,28,43]. On the other
hand, it can also explain the observation of QAHE observed
in a 5-SL MnBi2Te4 slab [50], which implies that the finite
magnetic gap overwhelms the hybridization gap. Note that
to observe quantized anomalous Hall resistance, a large gate
voltage (Vg = 200 V) is required to tune the εF to the charge
neutral point. From the perspective of our model, Vg removes
the self-doping effect, maintaining the ground state with a
magnetic gap [51]. Thus, we suggest that the topological
gap (0.64 meV, [50]) hinted by the realization temperature is
smaller than the magnetic surface gap of the charge-neutral
MnBi2Te4 because of the inhomogeneous band alignment of
the grown sample.

In this sense, our work also sheds light on several design
principles of MTI with magnetic gaps. According to Eq. (2),

one can either reduce the doping energy by looking for ma-
terials with large formation energy of charged defects, which
usually requires strong chemical bonding and stable structural
networks, or increase the relaxation energy, e.g., looking for
materials with large MAE and exchange energy. Furthermore,
our work not only demystifies the deviation between the the-
oretical predictions and experimental measurements on the
existence of the magnetic gap in the MnBi2Te4 family, but
also uncovers the essential role of the previously overlooked
doping effects in understanding a certain delicate interplay
between magnetism and topology.
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