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A B S T R A C T   

Graphene-metal (MGr) hybrid contacts have been broadly used to improve the contact properties of two- 
dimensional (2D) electric devices. Since grain boundaries of graphene are inevitable, it is quite necessary to 
investigate how the grain boundaries affect the contact properties of graphene-metal interfaces. Herein, based on 
first-principles calculations, we comprehensively studied the contact properties of graphene with grain bound
aries deposited on different transition metals substrates including Ni, Pd and Cu(111) slabs. Our calculations 
show that the grain boundaries always narrow and lower the tunneling barrier of the contacts, which will 
significantly increase the tunneling possibility of the carriers at the contacts. These results suggest a very 
convenient method to improve the performance of the graphene-based devices.   

1. Introduction 

Over the past decade, two-dimensional materials, especially van der 
Waals layered materials [1,2], have been widely used as the channel 
(such as MoS2), dielectric (h-BN) and contacts materials in the field- 
effect-transistor based devices [3], due to their many unique charac
teristics not found in their bulk counterparts [4]. However, the large 
contact resistance (Rc) between the contacts and the channel limits the 
ultimate performance [5]. For example, the typical value of Rc between 
metal and monolayer transition-metal dichalcogenides (mTMDs) is 
usually 1–3 orders higher [6,7] than that of metal-silicon contacts in 
complementary metal oxide semiconductor technology (order of 0.1 
kΩ∙μm) [8] and such high metal-mTMDs contact resistances signifi
cantly degrade the performance of TMD transistors [9]. 

Among many methods suggested to improve the contact properties 
(such as vacancies [10], self-assembly [11], phase engineering [7] and 
one dimensional edge contacts [12]), metal-graphene hybrid contact 
[13–15] is an efficient strategy to reduce the contact resistance of two 
dimensional material based field effect transistors. Therefore, it is 
crucial to study the contact properties at the metal-graphene interface 
[15] and explore the strategies to reduce the contact resistance. 

It is known that grain boundaries are always inevitable in typical 

graphene grown by chemical vapor deposition [16,17] on metal foils. 
However, atomic understanding of the contacts with grain boundaries is 
still absent. Therefore, it is important to explore how the grain bound
aries affect the contact resistance. 

According to the binding strength of the graphene-metal (MGr) in
terfaces explored by previous studies [18–21], graphene monolayer 
absorbed on metal substrates can be divide into two classes [18]: 1) 
chemisorption on Co, Ni, and Pd(111) which leads to a strong bonding 
and 2) physisorption on Al, Cu, Ag, Au, and Pt(111) which leads to a 
weaker bonding. Herein, we choose Ni, Pd and Cu(111) contacts, which 
stand for the strong, intermediate and weak bonding situations respec
tively, to explore the impact of grain boundaries in metal-Gr hybrid 
contacts. Adopting the coincidence lattice theory [22,23], different 
types of grain boundaries (whether consist of 4–8 rings or 5–7 rings) in 
graphene can be constructed by tuning the misorientation angle (θ), 
however, limited by computing resource, we only construct the type of 
grain boundary of graphene with θ = 21.8◦, which contain relatively less 
atoms in a supercell comparing to the other types of grain boundaries 
and also observed in experiment [24,25]. According to the elasticity 
theory [23], the interaction between grain boundaries decays expo
nentially with the separate distance, and here, we have inserted 4 six- 
membered C rings between two boundaries to reduce this interaction, 
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which is long enough to buffer the interaction between grain bound
aries. For convenience, we use 21.8-Gr, 21.8-MGr (M = Ni, Pd, Cu) to 
denote the graphene monolayer and metal-graphene contact with grain 
boundaries structures, respectively. 

Our results show that grain boundaries always enhance the interac
tion between graphene and metals, and the 5–7 rings in graphene are 
bent toward the metal surface which buckle the graphene monolayer. 
While for the contact properties, we found that the tunneling barrier has 
disappeared both in NiGr and 21.8-NiGr contacts due to the strong 
interaction between graphene and Ni. For the Cu and Pd cases, the 
tunneling barrier is narrowed and lowered by grain boundaries, espe
cially for the PdGr contact, the tunneling possibility is largely increased 
from 13.63% in PdGr to 50.12% in 21.8-PdGr contacts. Thus, our results 
indicate that the grain boundaries will lower the contact resistance by 
increasing the tunneling possibility in all graphene-metal hybrid 
contacts. 

2. Computational details and methods of analysis 

Our first-principles calculations are based on density functional 
theory (DFT) with generalized gradient approximation (GGA) for ex
change correlation potential given by Perdew-Burke-Ernzerhof (PBE) 
[26], as implemented in the Vienna Ab initio Simulation Package 
(VASP) [27]. A van der Waals (vdW) correction proposed by Grimme 
(DFT-D2) [28] was chosen due to its good description of long-range vdW 
interactions [29,30]. The projected augmented wave (PAW) method 
with a plane-wave basis set was used [31,32]. We set the energy cutoff 
and convergence criteria for energy and force to be 500 eV, 10− 4eV, and 

0.01 eVÅ
− 1

, respectively. Dipole correction [33,34] is used to calculate 
the electrostatic potential of the interfaces. The PHONOPY package [35] 
is adopted to calculate the phonon dispersion of 21.8-Gr monolayer and 
its thermal stability is confirmed by ab Initio Molecular Dynamics 
(AIMD) simulations. 

The surface calculations have been performed within slab model, 
involving three metal layers with atoms in the bottom two layers fixed to 

their bulk positions. Repeated slabs were separated by more than 15 Å to 
avoid interaction between each other. During the MGr contacts calcu
lation, for NiGr and CuGr, 1 × 1 commensurate structure is used, while 
for PdGr, 

̅̅̅
3

√
×

̅̅̅
3

√
Pd is used to match the 2 × 2 supercell of graphene 

(Fig. 1 in supplementary material shown the stable structures of MGr 
interfaces). The lattice mismatch of CuGr, NiGr, and PdGr are 3.70%, 
0.42% and 1.81%, respectively. For the 2-dimensional materials, any 
change to the lattice constant may affect the materials’ properties, 
considering this point, many literatures [36] have adopted the strategy 
that matching the lattice of metal to graphene’s if the mismatch is in the 
reasonable range. And in this study, we also employed this approach to 
avoid the introduction of stress in graphene as much as possible. 8 × 2 ×
1 and 14 × 2 × 1 K-point are adopted for the optimization and total 
energy calculations of the structures with grain boundaries, 
respectively. 

3. Results 

For the 21.8-graphene monolayer, grain boundaries are marked by 
shadows in Fig. 1b, which consist of repeating 5–7 ring pairs with a 
single intermediate hex-rings. As shown in Fig. 1a, the structure is 
slightly buckled with 0.145 Å. The calculated phonon dispersion and 
variation of the total potential energy of 21.8-Gr with simulation time 
during AIMD simulation are displayed in Fig. 1c and 1d, respectively. As 
shown in Fig. 1a, there are no imaginary modes in the entire Brillouin 
zone, which demonstrates that the 21.8-Gr is dynamically stable. And 
the average values of the total potential energy remain nearly constants 
during the entire simulations, confirming that 21.8-Gr is thermally sta
ble at 300 K. In Fig. 1e and 1f we also display the band structures of 
graphene and 21.8-graphene monolayer, respectively, and the calcu
lated energy gap of 21.8-graphene is 45 meV, which indicates the effect 
of grain boundaries. 

The structure configurations of metal-graphene interfaces without 
grain boundaries are displayed in Fig. 1s in supplementary material. In 
the cases of Ni and Cu, the adsorption positions of graphene on Cu and 

Fig. 1. (a) Top and (b) side view of the optimized model of 21.8-graphene. Red dashed boxes denote the supercell, grain boundaries are marked by shadows. (c) 
Phonon band structures and (d) Variation of the total potential energy of 21.8-Gr with simulation time during AIMD simulation at 300 K, respectively. The insets are 
the top and side views of the geometrical structures at the end of simulation. (e) and (f) denote the band structures of graphene and 21.8-graphene, respectively. 
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Ni are with one carbon atom on top of a metal atom, and the second 
carbon on a hollow site, namely top-fcc adsorption configuration, which 
are in consistent with previous studies [37–39]. 

The optimized structures of graphene with grain boundaries stacked 
on metal substrates are given in Fig. 2. With the introduction of grain 
boundaries, in the cases of Cu and Ni, on one side of the grain bound
aries, the C-C pairs are arranged with top-fcc configuration. While on the 
other side of the grain boundaries, C-C pairs deviate from the top-fcc 
configuration due to the variation of the crystal orientation. We name 
these C-C pairs as non-top-fcc pairs, as shown in Fig. 2. 

For the Cu case, the 21.8-graphene layer almost keeps flat and the 
grain boundaries sections slightly bend to the substrate, which makes 
the graphene layer closer to the Cu surface compared with CuGr con
tacts. The minimum distance between graphene and Cu surfaces is 
3.069 Å for CuGr and 2.895 Å for 21.8-CuGr respectively, as listed in 
Table 1. However, with the increasing of metal-graphene interactions 
(for Pd and Ni cases), the morphology of graphene layer has been 
buckled. For the 21.8-PdGr, the grain boundaries are attracted by the Pd 
surfaces which makes the graphene layer exhibiting wave-like shape 
(ΔhGr is 1.056 Å) and the dGr− M is significantly reduced from 2.853 Å in 
PdGr to 1.956 Å in 21.8-PdGr. For the Ni case, both the grain boundaries 
and the top-fcc pairs are attracted to Ni surface with minimum distance 
of 1.735 Å, while the non-top-fcc pairs present arch patterns and are 
repelled from the Ni surface. 

In order to figure out why the grain boundaries parts are attracted by 
the metal surfaces, we analyzed the charge transfer between the in
terfaces based on Bader’s method [40]. In Fig. 3a we displayed the 
histogram of the average charge transfer between carbon and metal 
atoms. In Cu and Pd cases, grain boundaries facilitate more electron 
transfers from metal slabs to graphene. For Ni case, on average, there are 
less charge transfer in 21.8-NiGr than in NiGr, however, more electron 
transfers occur for the top-fcc pairs (0.079e per C atom for 21.8-Ni| 

graphene and 0.059e for NiGr). In general, the grain boundaries in 
graphene will facilitate charge transfer in the graphene-metal contacts, 
which (as shown in Fig. 3b) strengthen the interaction between gra
phene and metal substrates in 21.8-MGr. And this conclusion is good 
consistent with the experimental result that pentagon–heptagon defects 
will enhance the interaction between graphene and metal [41]. 

In Fig. 4 we display the differential charge density of the 21.8-MGr 
interfaces. For all these three cases, at the area where charge transfer 
occurs, pz orbitals of the C atoms (Ctop) directly above the metal atoms 
obtain some electrons, whereas σ orbitals of Ctop atoms lose some elec
trons, which makes Ctop atoms negatively charged (blue iso-surface). On 
the other hand, for the metal atoms below (Mbelow) the Ctop atoms, dif
ferential charge density indicates charge reduction in dz2 orbitals and 
accumulation in dxz,yz orbital. 

To further understand the interaction of grain boundaries and metal 
slabs, in Fig. 5, we plotted the differential charge density around the 

Fig. 2. (a) Top and (b) side view for optimized structure of 21.8-CuGr, (c) and (d) for 21.8-PdGr, (e) and (f) for 21.8-NiGr. The grain boundaries also marked by 
shadows. Red dashed boxes denote the supercells in Ni and Cu cases, while green boxes denote the supercells in Pd case. M1 means metal atoms in the first layer that 
is near the graphene layer. 

Table 1 
The ΔhGr [̊A] (global corrugation), dGr− M[Å] (defined as the minimum distance 
from graphene to metal surfaces), and binding energyEbin vdW (eV) of the 
commensurate MGr and 21.8-MGr contacts. Binding energy is defined 
asEbin vdW = (Etot − EM − EGr)/NGr, Etot, EMEtot and EGrare the energies of MGr 
interfaces, metallic slab and graphene monolayer, respectively, and NGr is the 
number of the C-C pairs in graphene. A negative value for E indicates a binding 
system.   

CuGr 21.8- 
CuGr 

PdGr 21.8- 
PdGr 

NiGr 21.8- 
NiGr 

ΔhGr (Å) 0  0.146  0.015  1.057  0.006  1.201 

dGr− M (Å) 3.069  2.895  2.853  1.956  2.071  1.735 

Ebin vdW 
(eV)  

− 0.185  − 0.195  − 0.253  − 0.358  − 0.356  − 0.415  
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local sections (across the C1, C2 and the metal atom below C2, and these 
three atoms are also marked by green color in Fig. 4). Obviously, in all 
three cases of Cu, Pd and Ni, C1 atoms donate electrons to C2 from their 
σ bonds, as a result, the pz states of the C2 atoms in grain boundaries are 
further negatively charged compared to other Ctop atoms. As a result, 
such interactions pin the monolayer graphene toward to metal surfaces. 

For semiconductor and metal contacts, the charge injecting process 

involves the thermionic emission over the Schottky barrier and the 
tunneling emission across the barrier [42]. However, for graphene-metal 
contacts, the injection mainly depends on tunneling process, and the 
tunneling barrier should be low enough to enhance the transmission 
possibility of the carriers. A narrow and low tunneling barrier at the 
graphene-metal contacts can increase the electron injection. The height 
(ΦTB) and width (WTB) of tunneling barrier can be inferred from the 

Fig. 3. (a) Bader analysis histogram and (b) Binding energy of the interfaces. Green color represents the average charges obtained by each carbon atom; blue color 
denotes the average charges lost by each metal atom in the metal layer close to graphene. 

Fig. 4. Differential charge density with an iso-surface value of 0.0009 eÅ
− 3 

for (a) top and (b) side view of 21.8-CuGr, 0.004 eÅ
− 3 

for (c) top and (d) side view of 

21.8-PdGr, and 0.0065 eÅ
− 3 

for (e) top and (f) side view 21.8-NiGr, respectively. The blue and red regions indicate an increase and decrease in electron density, 
respectively. 
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effective potential [43] at the MGr contact, which represents the carrier 
interaction with other electrons and the external electrostatic field [44]. 
As illustrated in Fig. 6, ΦTB is the potential difference between vdW gap 
(ΦGap) and the Fermi level (EF)of the structures, and wTB is defined as the 
width of the square potential barrier. 

The tunneling possibility (PTB) is evaluated based on the equation 
[6,44,45]: 

PTB = exp
(

−
2wTB

ħ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2mΦTB

√
)

where ℏ is the reduced Planck’s constant, m is the mass of the free 

electron, and wTB and ΦTB(shown in Fig. 6) is the width and height of the 

Fig. 5. Sectional map across the atoms marked by green colors in Fig. 4 of the differential charge density. (a) for 21.8-CuGr, (b) for 21.8-PdGr and (c) for 21.8-NiGr. 
The white and dark regions indicate an increase and decrease in electron density, respectively. 

Fig. 6. Effective potential profile of (a) (b) and (c) for MGr, (d) (e) and (f) for 21.8-MGr. Red-dash line stands for Fermi level.  

Table 2 
The calculated tunneling barrier width wTB, height ΦTB and tunneling proba
bility PTB of the with and without contacts.   

CuG 21.8-CuG PdGr 21.8-PdGr NiG 21.8-NiG 

wTB(Å) 1.339  1.205  1.110  0.536 0 0 

ΦTB(eV) 3.168  3.075  3.067  1.531 0 0 
PTB(%) 8.67  11.39  13.63  50.12 100 100  
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potential barrier. And the results of wTB, ΦTB and PTB are also listed in 
Table 2. 

As showed in Fig. 6c and 6f, for the Ni case, whether the contacts 
with or without GBs, due to the chemical bond formed between Gr and 
Ni, the tunneling probability is 100%, indicating high efficiency of 
carrier injection, this also confirms the experimental results [46] that 
the Ni contact has low resistance compares to other contacts [36]. For 
the Cu case, as shown in Fig. 6a and 6d, due to weak interaction, a very 
high and wide tunneling barrier formed between Cu and graphene 
monolayer, which indicates a very low efficiency of electron injection, 
leading to high contact resistance. However due to the appearance of 
grain boundaries, the tunneling possibility PTB is improved from 8.67% 
in CuGr to 11.39% in 21.8-CuGr. Usually, strong interaction will lead to 
large tunneling probability, and for the Pd case, it has stronger inter
action with graphene than Cu case which lead its larger probability 
(8.67% for CuGr and 13.63 for PdGr, as shown in Table 2), this general 
trend of our results is consistent with previous study [47]. And when 
grain boundaries appear in 21.8-PdGr, the width (height) of tunneling 
barrier is narrowed (lowered) from 1.110 to 0.536 Å (3.067 to 1.531 
eV), and the tunneling possibility is largely increased from 13.63% to 
50.12%. Thus, our results clearly indicate that the grain boundaries can 
increase the tunneling possibility of the graphene-metal contacts which 
further improve the performance of the graphene-based devices. 

Generally, the grain boundaries are the undesirable components in 
intrinsic graphene layer which may degrade the electrical performance. 
However, Adam et al. [48] found that the electrical conductance is 
improved by one order of magnitude by GBs with better interdomain 
connectivity. Zhou et al. [49] also reported that graphene with boundary 
regions made up of dislocation exhibits relatively low resistivity which is 
comparable to the resistivity of the graphene sheet itself. Herein, based 
on our calculations, we also show that the contact resistance of the 
graphene-metal contact can be significantly decreased by the grain 
boundaries. It should be noted that considering the calculation resource, 
we only construct the grain boundaries with intermediate 5–7 ring pairs 
which has very low-density dislocations, however, we can easily 
experimentally synthesize the grain boundaries with continuous 5–7 or 
4–8 rings and tune the distance between grain boundaries to increase the 
density of dislocations in graphene layer and thus further decrease the 
contact resistance. Therefore, our results suggest a very convenient 
strategy to control the performance of the contacts and provide new 
insight to design the graphene-based devices both theoretically and 
experimentally. 

4. Summary 

In this work we have presented a DFT study of graphene with grain 
boundaries layer and their contact with Cu, Pd and Ni(111) surfaces. 
Our results show that for graphene layer, the grain boundaries only 
induce small buckling and the band gap is opened about 45 meV. Due to 
the interlayer interactions, the grain boundaries areas of graphene are 
buckled toward the metal surfaces. For the strong interaction cases (Ni), 
due to the overlap of the orbits, the tunneling barrier is overcome 
completely. For the weak and intermediate interaction cases, grain 
boundaries can efficiently increase the tunneling possibility and thus 
decrease contact resistance. Thus, our results show that the grain 
boundaries can be an efficient method to control the contact perfor
mance of the graphene-based devices. 
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